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8-Hydroxydeoxyguanosine (8-OHdG) is now widely used as a sensitive marker of oxidative damage to 
DNA. When human granulocytes are stimulated with TPA, they release a large quantity of reactive oxygen 
species (superoxide, hydrogen peroxide) which might be expected to generate hydroxyl radicals (OH.) 
which in turn could produce 8-OHdG in the DNA. There had been considerable debate as to whether OH. 
is detectable in stimulated granulocytes; most workers now agree that none can be detected, unless 
exogenous iron is added. An earlier report had described that 8-OHdG (a marker of OH -) was increased 
in the DNA of TPA-stimulated, compared to control, granulocytes. We have repeated this experiment and 
have been unable to reproduce this finding. We conclude that the amount of 8-OHdG produced in the 
DNA of TPA-stimulated human ganulocytes is indistinguishable from that seen in control (unstimulated) 
cells (less than one I-OHdG/ld dG). 
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INTRODUCTION 

The presence of 8-hydroxydeoxyguanosine (8-OHdG) (detected by HPLC-EC’), is 
now widely used as an indicator of oxidative damage to DNA. 8-OHdG can be pro- 
duced by hydroxyl radical (OH.) but also by other oxidizing species such as lipid 
peroxides, singlet oxygen and UV irradiation and certain carcinogenic An 
important biological source of oxyradicals is the respiratory burst of granulocytes 
which produce large quantities of superoxide (023 and hydrogen peroxide (H,02), 
effectively exposing these cells to relatively high concentrations of these oxidizing 
species. In the presence of transition metals, these species would be expected to pro- 
duce OH * via the Haber-Weiss reaction. However, evidence that OH. is actually pro- 
duced in or around granulocytes as a result of the respiratory burst had been 
conflicting. Most workers now agree that OH- is not found in activated granulocytes 
unless exogenous iron is added, likely because of the iron-binding properties of 
lactoferrin.”’2 In this context, an earlier report identifying a large increase in 
8-OHdG in the DNA of granulocytes following stimulation with TPA was of par- 
ticular interest since it seemed to indicate that OH. was being produced intra- 
cellularly at a location where it could reach the DNA13. Granulocytes have been 
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TABLE I 
8-OHdG content of human granulocyte DNA, expressed as moles per lo5 moles dGa. Cells were untreated 

or treated with TPA as described in Materials and Methods 

Donor no. (a) (b) (C) 
Incubation at 0°C Incubation at 37” Incubation at 37” 

(control) (control) (with TPA) 

7.8 f 2.1 (n = 2) 5.5 f 0.0 (n = 3) 
7.5 f 2.1 (n = 3) 7.5 f 4.5 (n = 3) 

I 
I1 

< 1.39 (n = 3) 
7.0 f 1.4 ( n  = 3 )  

aMeans f SEM are shown except for n = 2 where mean f ranges are shown. 

studied extensively with respect to DNA strand breaks associated with the respiratory 
burst.”” The identification of large amounts of 8-OHdG would lend support to 
the notion that strand breaks observed in activated granulocytes might be due to 
oxidative attack on the DNA backbone by OH.. Because of the importance of this 
observation to the study of the mechanism of DNA strand breakage, we reinves- 
tigated the question of whether 8-OHdG could be detected in increased amounts in 
DNA from activated granulocytes. We now report that preparations of purified 
DNA from highly purified granulocytes show no significant increase in 8-OHdG 
following stimulation with TPA. 

MATERIALS AND METHODS 

Methods used for preparing purified human granulocytes and for measuring DNA 
strand breaks have been described”. Preparations contained greater than 97% 
granulocytes and less than one red blood cell per white cell. Purification of DNA 
followed our published procedure” with the following modifications. No phenol 
extraction step was carried out and ribonuclease was not used since granulocytes have 
only very small amounts of RNA compared to DNA2’. Precipitated DNA was sent 
under ethanol from Ottawa to Oklahoma City for 8-OHdG analysis by HPLC-EC 
as describedu. DNA strand break analysis was carried out by the FADU 
procedure”. Measurements of 027 production was carried out by a 10-min pulse 
method.I5 Granulocytes were suspended at a concentration of 1 x lo6 cells per mL 
in a balanced salt solution for all experiments” 

RESULTS 

Freshly isolated, highly purified human granulocytes were suspended in a balanced 
salt solution containing 5 mM glucose and incubated at 0°C or at 37°C in the absence 
or presence of 50 nM TPA (12-O-tetradecanoylphorbol 13-acetate). Using granulo- 
cytes from 2 different normal donors (I and l l ) ,  3 separate incubations and DNA 
isolations were carried out for 8-OHdG analysis. Results are shown in Table 1. There 
was no statistically significant difference (p > 0.1, one way ANOVA) in 8-OHdG 
content amongst samples of DNA from cells from either donor incubated at 37°C 
in the absence or presence of TPA. That is, within the limits of detection of the 
system, there was no indication that stimulation of granulocytes with TPA, a treat- 
ment known to cause generation of oxyradicals and DNA strand breaks, caused an 
increase in 8-OHdG. The value observed in both control and TPA-stimulated cells 
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TABLE 2 
Superoxide production and DNA strand breaks in TPA-stimulated human granulocytes. 

Donor no. 0 z T  Production (nmoles/106 DNA strand bieaks 

I 149.7 f 8.2 
111-VIII 

ce11s/40 min)a (Qd units) 

70.8 f 17.2 (n = 5) 

aOz’production was measured on the same granulocyte preparation as used in Table 1. Result shown 
is the mean f SEM of one analysis carried out in triplicate. This value is within the range of 02’mea- 
surements carried out on samples prepared from 14 different donors under similar conditions 
(148.3 f 10.1) (average f SEM). 

bDNA strand break measurements were carried out under the s a p  conditions on samples from 5 dif- 
ferent donors. 1 Qd unit is estimated to indicate 120 SSB per cell . 

is well below the value reported earlier (43 8-OHdG/ld dG residues or 1.3 
pmole/pg DNA)13. 

The only significantly different result from all the others in Table 1 was obtained 
using 0°C incubated cells from donor 1. The 8-OHdG content was below detection 
limit, which was estimated to be = 1.4 moles of 8-OHdG per 1 x 1 6  moles of dG 
for the analyses reported. 8-OHdG was below the detection limit in at least 12 other 
control samples from other donors (data not shown). 

Superoxide production by TPA-stimulated granulocytes was measured at the same 
time that 8-OHdG was measured in cells from donor 1. The result is shown in Table 
2. OZTlevels were in the expected range for normal human granulocytes, indicating 
that the cells were metabolically active at the time of TPA stimulation prior to DNA 
isolation for 8-OHdG measurement. DNA strand breaks were also measured by the 
FADU method. 70 Qd units corresponds to about 8400 SSB (single strand breaks) 
per cellz3 induced by TPA treatment, or 0.6 SSB116 dG residues, assuming 6 x lo9 
nucleotides per cell. 

DISCUSSION 

Our results differ from those reported earlier as to the content of 8-OHdG in DNA 
from TPA-stimulated human  granulocyte^'^. The reason for the discrepancy is 
uncertain; it is possible that an impurity such as copper in the earlier preparations 
of granulocytes may have been the cause of the discrepancy between the present and 
the earlier r e p ~ r t . ’ ~ . ~ ~  The present results do not rule out the possibility that small 
amounts of 8-OHdG are induced in granulocytes. Rather, we conclude that no 
8-OHdG was detectable in TPA-stimulated cells above the background observed in 
control cells. Other workers have detected 8-OHdG in the DNA of “target” cells co- 
incubated with TPA-stimulated granulocytes2’. The relatively large amount of HzOz 
scavenging enzymes such as myeloperoxidase and catalase present in kranulocytes 
may explain why these cells suffered little or no oxidative base damage to their 

The cause of the observed “background” levels of 8-OHdG is of considerable 
interest. 8-OHdG may arise after cells have been lysed, perhaps during DNA purifica- 
tion and/or enzymatic digestion27. Typically, most workers have described levels of 
1 to 2 8-OHdG residues116 dG in control DNA.26v28-30 An increase in 8-OHdG con- 
tent (0.3 residues116 dG/hr digestion of DNA with alkaline phosphatase) has been 
reported by Kasai and coworkers3’. They also observed that 8-OHdG content could 
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be increased by the use of phenol during DNA isolation and during “prolonged” 
homogenization of mouse liver prior to extraction of DNA. The effect of exposure 
of DNA to phenol and other organic solvents on 8-OHdG yield has been shown to 
be significantg2. Others have observed a variety of oxidized bases, including 
8-OHdG, in DNA from “untreated” normal and tumour t i s ~ u e s , ~ ~ * ~ ~  but whether 
these are present in situ or whether they arise during DNA extraction and processing 
has been questioned”. 

Kasai et al.3’ reported that 8-OHdG was induced by ionizing irradiation of HeLa 
cells and whole mice at a rate of 0.008-0.018 residueA6 dG/lO Gy. Ionizing radia- 
tion is expected to induce 0.8 SSB per 1 6  dG in DNA per 10 Gy (calculated from 
1,200 SSB/6 x lo9 bases/Gg3). Our estimate (see above) is that TPA induces 0.6 
SSB/16 dG in DNA. Ifan ionizing radiation-like mechanism were operative to pro- 
duce both SSB and 8-OHdG, then one might expect 0.006-0.014 8-OHdG/105 dG 
to be formed. Clearly, such values are too low to be detected in granulocytes until 
conditions which reliably produce ultra-low backgound levels of 8-OHdG in DNA 
are established. 
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